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The major mineral resources geographical locations

« About 80% of the known world manganese resources are
located in South Africa; other important manganese deposits
are in Ukraine, Australia, India, China, Gabon and Brazil.

 Titanium is the ninth most abundant element in the Earth's
crust. The most important minerals for mining titanium are
rutile (TiO,) and ilmenite (FeTiO,). The top producing
countries of these ores are Australia, South Africa, and
Canada.

Corathers, Lisa A. (2009). "Mineral Commodity Summaries 2009: Manganese" (PDF).
United States Geological Survey. Retrieved



Titanium deposit & production

World titanium reserves

(Data in thousand metric tons of contained T10:)

World Ilmenite Production

(Data in thousand metric tons of contained TiO:)
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In the automotive industry
« EV market to grow 14-fold from $10bn in 2014 to $140bn by 2020.

The feasible approach to curb air pollution.

Falling battery/EV costs due to mass production.

Improving product range (e.g., Chevy Bolt, Tesla Model 3).

Ongoing expansion on fast-charging infrastructure (Li,Ti:O,,-LTO).

(Berenberg, Feb 2016)



Tesla’s New Gigafactory

Opens 2017, Reno, Nevada

Employ upto 6,500 people and
pay ~$ 25/hr.

Builds lithium  -ion batteries.
Cost to build  Gigafactory
— $5 Billion

— Nevada pitching in $1+ Billion
In incentives

$100 billion economic benefit
over 20 years.

Factory will help Tesla move
closer to mass producing $35,000
car with 200 mile range.

in annual battery production by 2020,
Enough for 500,000 Tesla cars
d by renewable energy
et zero energy factory



In the utilities technologies

- Battery storage to grow from ~$0.5bn in
2015 to a ~$14bn market by 2020 due to
Increasing renewables investment;

* For residential “battery-plus-solar”

« The realization of power generation and
micro-grids instead of the centralised

distribution model.

(Berenberg,2016)




L-ion batteries  prices

Share of VRE generation . .
Energy storage prices are falling

rapidly, allowing new combinations
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L-ion batteries to cross $100/kWh in 2018 :
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Key African market

Figure 1.6 = Number and share of people without access to electricity by
country, 2012
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<20% Africans have access
to electricity (World Bank)

Sub-Saharan Africa (SSA)
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a) Objectives
A Technical: To produce high-performance manganese-rich
electrode materials for lithium-ion batteries.
A Socio-economic: Assist local SA industries via value-addition to

mineral beneficiation (notably, EMD and manganese salts) and job
creation.

b) SA’s competitive advantages

A Access to key raw materials, e.g., EMD, Titanium, fluorine
A Access to key African market, especially sub-Saharan Africa:
A Unique IP that reduces costs: CSIR patent-filed.

c) Expected time to market
A Possibly by 2025

GOIR
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LIB Value Chain

Basic Fabricated Semi-manufactured Manufactured Components,
Products Products Finished/Assembled Products
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The position of the CSIR in the value chain is a semi-manufacturer, which
will allow for the supply of the products to firms engaged in cell assembly,
battery module and packs integration, as well the end-user vehicle manufacturers.,

GOIR
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Partnership (local & International) & Roles

a) Acgdemic
A UWC, NMU, Wits and UP are involved in the training of our
students and characterisation of materials

A Overseas universities (e.g., NUS Singapore and VUB, Belgium)
are/will be involved in the characterisation of the materials.

b) Industrial

A TIAis funding the process optimisation and scale-up to 1 kg
batches of the CSIR patent-filed synthesis of LMNO.

A Bushveld Manganese (Pty) Ltd is supplying agueous manganese
nitrate for the LMNO scale-up



Cathode demand

Cathode active materialsin 2025
400.000 tons




Electrochemical En@[r@y Storage Laboratory
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Synthesls and processing




Materials characterisation
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Electrochemical evaluation
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Electrochemical Energy Technologies (EET)
* Lithium & Sodium ion

batteries
» Electrochemical capacitors

Targets

» Electric vehicles
« Stationary / utility

Pouches lighting LED :

GOIR
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State of present day activities

Chemistries:

LMO, LMNO, LMNC, LFP, LTO, SIB, ZIB, Supercapacitors
* Doping

o Structural stabilisation, enhanced electrochemistry
* Nano-sizing

o Enhanced mass transport properties

« Surface-coating

o Structural stabilisation, enhanced electrochemistry

« Microwave irradiation

o Control manganese valence state
o Structural stabilization

our future through science




Technology Development Pathways

Electrochemical
testing and
device
demonstration

Lab-sCale Reaction Powder ~10g Coin/button Cell

Pouch cells and battery

Bench scale reactor (SIR
2

our future through science



Cell assembly

Coin cells ready for
electrochemistry testing

Individual parts of a coin cell:

A — negative electrode cap

B — positive electrode cap

C — separator

D — Spacer

E — spring .

F — Coated electrodes R

our future through science



discharge
e | Erpm—ry
Loadl ~
@
) .
5 % 22 . e Li* s .
mAW
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cathode Li* conducting anode
(LiCoO,) electrolyte (graphite)
'dh

At the anode:
6C + xLi* + xe z Li, Cq

At the cathode:

LiCoO,

LUMO

HOMO

Electrolyte

Vd . 1+ -
z Li, ,CoO, + xLi*+ xe

The difference in chemical potential
between the anode (u,) and the
cathode (u¢) is the working voltage
(open circuit voltage), Vo :
Ha — HUe
..... - Voo = ———
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layered LiCoO2 spinel LiMn204 olivine LiFePO4
2D 3D 1D

— -
~

Dimensionality of the Li*-ions transport

GOIR
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Discharge capacity / mA h g-
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Research Challenges for

V Jahn-Teller distortion in the 3V region,
which is due to the generation of new
phases during cycling

V Disproportion reaction inthe 4 V.
2Mn 3 (S)Y Mn#* (S) + Mn 2* (solution)

C Doping

V Structural stabilisation , enhanced electrochemistry
C Nano -sizing

V Enhanced mass transport properties
C Surface -coating

V Structural stabilisation , enhanced electrochemistry
C Microwave irradiation

V Control manganese valence state

V Structural stabilization
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Development of LiMn,O, cathode material from South African

raw material for lithium ion batteries

LMO nanorods |
- The nanorods quantity and

distribution increases with
time.
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Cyclic performance
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Intensity (a.u.)

LiMn,O, cathode for lithium-ion battery

Development of LiMn,O, from South African raw material (EMD)
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Current density (mA/g)

Current density (mAlg)

LIB & SIB characterisation and testing
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In-house synthesized TiO, nanotubes

Autoclave

Collecting
NaOH 1 ‘-TIO and

— ] Oil bath washing
“ - c e

Stirred for2 h

Stirred for 24 h
130 °C

Fig. A set-up of stirring hydrothermal
for the growth of TiO, Nanotubes

« Nanotubular TiO, by an alkaline hydrothermal reaction of TiO2 particles.

« Formation of TiO, nanotube or nanowire occurs by the heat treatment (annealing) of
layered hydrogen titanate or protonated polytitanate (H,Ti O,.,-XH,O) previously
lon-exchanged by HCI washing from sodium hydrogen titanate
(NayH; ; T1,05441-XH,0).

It should also be noted that the shapes and electrochemical properties of nanotubular
TiO, strongly depend on the synthesis conditions, primarily the NaOH concentration
and the annealing temperature.




Electrochemical analysis of TiIO, nanotubes
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* The transition metals Mn and Ti are very useful for
electrochemical energy storage applications

« these minerals availability in South Africa is a
benefit.

« At CSIR both elements are being used for cathode
and anode materials for lithium ion battery

* The trend to industrial size manufacturing is very
Important.
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