Biofuels for Transportation

Dr Kate Haigh,
Prof Johann Görgens,
Process Engineering
Why Biofuels?

• Besides electricity, transport is the biggest CO₂ emitter in South Africa
 – Due to Sasol’s coal processes
 – 40% efficiency = 60% CO₂ production
• Liquid biofuels have a good energy density
 – Energy stored per kilogram biofuel is an order of magnitude greater than electric batteries
• Cheapest option for gaseous fuels is biogas which can be used in petrol or diesel vehicles
 – Significant range limits compared to liquid fuels
Types of Liquid Biofuels

• The most well known:-
 – Biodiesel by transesterification
 – Bioethanol – to blend with petrol
 – Synthetic fuels – from biobased resource

• Less well known:-
 – Upgraded pyrolysis oil
Types of feedstock

- **First Generation (1G)**
 - Edible oils (soybean and canola oil) used for biodiesel
 - Bioethanol produced from sugar cane or starch crops (grain sorghum and triticale)

- **Second Generation (2G)**
 - Waste oils and animal fats used for biodiesel production
 - Lignocellulosic biomass (energy crops, agricultural and forestry residues, industrial waste)
 - used to produce a variety of products including ethanol, synthetic fuel and upgraded pyrolysis oils

- **Third Generation (3G)**
 - Algae can be used to produce fuels and high value pharmaceuticals
Challenges with Manufacturing

- More expensive to process due to feedstocks having:
 - Low energy density
 - High oxygen content
- Financial incentives usually subsidies required
- The need to avoid competition with food – by using or displacing edible feedstocks
- Process energy is often required and this may be sourced from fossil fuels – carbon balance
The carbon cycle - biodiesel

- Energy to plant, cultivate and harvest crops
- Energy to make vegetable oil
- Energy to make biodiesel

Key:
- Red: Energy Flow
- Green: Carbon Flow
- Blue: Material Flow
SA Biofuels subsidy route

- Mandatory blending targets - 1 Oct 2015
- Subsidy to guarantee a 15% ROA
- Calculations by Brian Tait (2014):

![Graph showing incentive (c/l) to achieve 15% ROA]

Averages Jun 10 to Nov 13:
- Sorghum = 301.5 c/l
- Sugarcane = 287.5 c/l
- Soya = 209.2 c/l
Starch crops

Wheat Triticale Rye

Endosperm Bran Wheat germ
Additional subsidy considerations

- There is a focus on large scale producers
 - Typically 160 million litres / year
- There is a focus on developing new agriculture
 - Job creation
 - Rural upliftment
- Limited to 1G projects
 - Cheaper
 - Dedicated energy crops such as grain sorghum (carbon balance?) – new agriculture
1G Environmental Issues

• 1G ethanol – from sugar cane
 – Brazilian experience shows that social and economic benefits are possible
 – Very positive carbon balance
 – Sugar cane bagasse available for energy
 – BUT a specific climate required to grow sugar cane

• 1G ethanol – from starch e.g. grain sorghum
 – Potential food vs fuel issues
 • Primarily land use
 – Carbon balance issues
 • Energy for conversion may be supplied by fossil fuels such as coal

• 1G biodiesel
 – Also food vs fuel issues
 – Water required for product purification and catalyst removal
BIOFUELS NOT INCLUDED IN SUBSIDY SCHEME
Invasive Plants as a feedstock

120 million tons of invasive alien plants in South Africa

SASOL uses 40 million tons of coal / year
What about industrial waste?

- Approximately 550-1500 dry tons paper sludge/day
- Degraded cellulose fibres \rightarrow ethanol
The 2G Options

- The lignin fraction of lignocellulosic biomass can be burnt for energy
- Includes dedicated crops and associated issues
- Potential to use agricultural waste, forestry residues and alien vegetation
- Pyrolysis can be used to convert lignocellulosic biomass to charcoal which could be gasified by Sasol or PetroSA
The Sasol Perspective

- Replace 10% of Secunda’s coal feed with biomass.
 - 4 million tons/a of **sustainable** agricultural residue
 - Excludes invasive plants
- Relative cost of different feed material to Secunda

<table>
<thead>
<tr>
<th>Feed stock</th>
<th>Fence price</th>
<th>Pre-treatment</th>
<th>Transport</th>
<th>Secunda gate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Secunda coal</td>
<td>1</td>
<td>0,25</td>
<td>0,25</td>
<td>1,5</td>
</tr>
<tr>
<td>Agricultural waste SA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chips</td>
<td>0,5</td>
<td>0,5</td>
<td>2,5</td>
<td>3,5</td>
</tr>
<tr>
<td>Pellets</td>
<td>0,5</td>
<td>2,0</td>
<td>1,5</td>
<td>4,0</td>
</tr>
<tr>
<td>Torrified pellets</td>
<td>0,5</td>
<td>2,5</td>
<td>1,2</td>
<td>4,2</td>
</tr>
<tr>
<td>Energy crop Mozambique</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chips</td>
<td>2,5</td>
<td>0,5</td>
<td>7,5</td>
<td>10,5</td>
</tr>
<tr>
<td>Pellets</td>
<td>2,5</td>
<td>2,0</td>
<td>4,0</td>
<td>8,5</td>
</tr>
<tr>
<td>Torrified Pellets</td>
<td>2,5</td>
<td>2,5</td>
<td>3,0</td>
<td>8,0</td>
</tr>
</tbody>
</table>
Triticale in the Western Cape

Lots of hectares of marginal lands, no longer economically viable for wheat production => triticale
Technology considered by EnviroServ (1)

- Anaerobic Digestion
 - Well Proven
 - Can be utilised for all 3 types of energy offtakes
 - Requires minimum of 15 tons/day
 - Balance Nitrogen and Carbon
 - High Digestate volume
An Energy Offtake option - EnviroServ

- Transportation Fuel
 - Diesel R 1.18/ kWh
 - Wide Application
 - Upgrading required
 - Compressed Methane
 - Dual Fuel Conversion
 - Diesel & Petrol
Bio-ethanol/Diesel blending

Economic Pre-feasibility study on ethanol diesel blending in South Africa – BP Greyling

Basic idea:
Pioneered by South-African’s in 1980’s as possible alternative agricultural fuel
Blend Bio-Ethanol with diesel 16% (v/v)
Ethanol production – Industrial first generation Tech @ 1, 80 or 160 million l/annum have been shown to be economically viable production volumes

Approach:
Blending of ethanol at fuel Depot level - Safety and Vehicle limitations
Supply to dedicated vehicle fleet i.e. Logistics operators
Localized production of Bio-ethanol allows regional bio-feedstock

South African logistics operations
Blending based at major logistics depot locations.
Current model - up to 513 million l/annum ethanol demand for blending via this approach.
(2.08% of Bio-fuels Target)
Efficient use of biomass
Thank you for Listening
Types of Biofuel

• The most well known:-
 – Biodiesel
 – Bioethanol – blended with petrol
 – Wood chips and pellets

• Less well known:-
 – Upgraded pyrolysis oil
 – Biochar and torrified wood to replace coal
Potential areas of collaboration

- Specifically (thermo)chemical processes (excluding any biotech/bioprocessing) the following would be interesting:
 - David Naron’s project on catalytic pyrolysis of lignins
 - Catalytic pyrolysis will also apply to waste tyres (we are planning a project for 2015) and waste plastics (Evans Chomba).
 - Techno-economic and environmental impact modelling, similar to the Greenfund project. Processes to consider will include:
 - Biological production of organic acids, followed by catalytic upgrading
 - Catalytic conversion of ethanol to high value chemicals
 - Aqueous phase pyrolysis with lignocellulose and/or lignin
 - Fractionation of lignocellulose by chemical solvents, to provide raw materials for further conversion => and possible further chemical conversions.
Strengths - SA

- Sasol industrial scale gasification synthesis
- Coal heavy industry provides opportunity for pyrolysis products
- Good academic biotech
- Western Cape grain production
Stellenbosch

- Good biotech
- International collaborations
- Pilot scale equipment
 - Pre-treatment Hydrolysis fermentation of LCB
 - Pyrolysis equipment with investment in new equipment
- Separation and distillation
Steamgun Pretreatment of Lignocellulose
Leading Investment, Unprecedented Focus on CBP

Technical Focus: Overcoming the biomass recalcitrance barrier and enabling the emergence of a cellulosic biofuels industry via *pioneering CBP technology integrated with advanced pretreatment*

Partners in Mascoma’s CBP Organism Development Effort

- VTT
- Dartmouth College
- University of Stellenbosch
- BioEnergy Science Center
- Department of Energy

Three Platforms

1. *T. saccharolyticum*, thermophilic bacterium able to use non-glucose sugars
2. *C. thermocellum*, thermophilic cellulolytic bacterium
3. Yeast engineered to utilize cellulose and ferment glucose and xylose

Multiple chances to succeed near-term & long-term
Challenges

• Limited biomass availability and production
 – Marginal lands e.g. triticale,
 – W2E
Total bioenergy production potential in 2050 based on different agriculture systems [expressed as EJ (10^{18} J). yr$^{-1}$; left to right bars – conventional to highly productive agriculture systems].
Additional data

• Brazilian carbon balance is 8 (green carbons vs fossil carbon) – based on atoms

• The estimated subsidy to feed Sasol is R4/litre